Shaw Prize 2020

The Shaw Prize 2020 in the Mathematical Sciences goes to Alexander Beilinson and David Kazhdan “for their huge influence on and profound contributions to representation theory, as well as many other areas of mathematics.” More information can be found here: https://www.shawprize.org/laureates/mathematical-sciences/2020.

MINTchallenge

Der Club MINT, eine Initiative des Stifterverbands, ruft regelmäßig die MINTchallenges aus in denen “schlaue Ideen zur Lösung aktueller Herausforderungen der MINT-Bildung an Hochschulen” gesucht werden. In der aktuellen MINTchallenge sucht der Stifterverband nach “kreativen, digitalen Alternativen zu Präsenzveranstaltungen an Hochschulen, die das MINT-Studium auch nach der Corona-Pandemie nachhaltig verbessern.” Bewerbungsschluss ist der 13. Juni … Continue reading "MINTchallenge"

Instability of Anti-de Sitter Space-Time

A recent article in the QuantaMagazine (link) discusses a paper of Georgios Moschidis (arXiv:1812.04268) who proved instability of Anti-de Sitter space-time for a certain Einstein-matter system. Recall that the Anti-de Sitter space-time is the maximally symmetric solution of the vacuum Einstein equations in the presence of a negative cosmological constant. One can attach a boundary-at-infinity to Anti-de Sitter … Continue reading "Instability of Anti-de Sitter Space-Time"

EMS Prizes 2020

Though the 8th European Congress of Mathematics was postponed to 2021, the recipients of the EMS Prizes 2020 were already announced: https://8ecm.si/news/69.

Local-to-global principles for the topology of boundaries of hyperbolic groups

Two weeks ago a paper was posted (by Benjamin Barrett) on the arXiv (arXiv:2004.11650) proving the following theorem about Gromov boundaries of word hyperbolic groups: Let \(G\) be a one-ended hyperbolic group. Then \(\partial G\) is locally simply-connected if and only if for every point \(\xi\in \partial G\) the space \(\partial G \setminus \xi\) is … Continue reading "Local-to-global principles for the topology of boundaries of hyperbolic groups"