Local-to-global principles for the topology of boundaries of hyperbolic groups

Two weeks ago a paper was posted (by Benjamin Barrett) on the arXiv (arXiv:2004.11650) proving the following theorem about Gromov boundaries of word hyperbolic groups: Let \(G\) be a one-ended hyperbolic group. Then \(\partial G\) is locally simply-connected if and only if for every point \(\xi\in \partial G\) the space \(\partial G \setminus \xi\) is … Continue reading "Local-to-global principles for the topology of boundaries of hyperbolic groups"

Remote teaching for the working mathematician

Ich bekam als Reaktion auf meinen Blogbeitrag zu Remote teaching einige eMails, in denen nach konkretem Rat und praktischen Tips gefragt wurde für das kommende Semester. Vorlesungen Präsentiert man den Studierenden den Stoff mit Hilfe eines ausführlichen Skriptes oder aufgezeichneten Videos, so sollte man ihnen meiner Meinung nach konkrete Arbeitsanweisungen zum Durcharbeiten des Materials geben. … Continue reading "Remote teaching for the working mathematician"

Aspherical manifolds and positive scalar curvature

Recall the following conjecture about aspherical manifolds (i.e., manifolds whose universal cover is contractible): If M is a closed, aspherical manifold, then M does not admit any Riemannian metric of positive scalar curvature. In January I saw a preprint being posted on the arXiv (2001.02644) claiming to have resolved this conjecture. If it turns out … Continue reading "Aspherical manifolds and positive scalar curvature"

Lindelöf hypothesis

Today I stumbled across a news article ( link ) written about someone (actually, Athanassios Fokas – a known mathematician) having announced progress on the Lindelöf hypothesis ( wikipedia ). The Lindelöf hypothesis is related to the Riemannian hypothesis and actually also follows from it – progress on the Lindelöf hypothesis would also mean progress … Continue reading "Lindelöf hypothesis"