Topological CAT(0)-manifolds

It is an interesting and important fact that a contractible manifold (without boundary) is not necessarily homeomorphic to Euclidean space. This makes the classical Cartan-Hadamard theorem, stating that a contractible manifold equipped with a Riemannian metric of non-positive sectional curvature is diffeomorphic to Euclidean space, even more powerful. One can ask now whether one can … Continue reading "Topological CAT(0)-manifolds"

PSC obstructions via infinite width and index theory

In a recent preprint (arXiv:2108.08506), Yosuke Kubota proved an intriguing new result on the relation of largeness properties of spin manifolds and index-theoretic obstructions to positive scalar curvature (psc): Let \(M\) be a closed spin \(n\)-manifold. If \(M\) has infinite \(\mathcal{KO}\)-width, then its Rosenberg index \(\alpha(M) \in \mathrm{KO}_n(\mathrm{C}^\ast_{\max} \pi_1 M)\) does not vanish. Let us … Continue reading "PSC obstructions via infinite width and index theory"

(Non-)Vanishing results for Lp-cohomology of semisimple Lie groups

For a locally compact, second countable group \(G\) one can define the continuous \(L^p\)-cohomology \(H^*_{ct}(G,L^p(G))\) of \(G\) and the reduced version \(\overline{H}^*_{ct}(G,L^p(G))\) for all \(p > 1\). In his influential paper “Asymptotic invariants of infinite groups” Gromov asked if \[H^j(G,L^p(G)) = 0 \] when \(G\) is a connected semisimple Lie group and \(j < \mathrm{rk}_{\mathbb{R}}(G)\). … Continue reading "(Non-)Vanishing results for Lp-cohomology of semisimple Lie groups"

Rigidity implication of the Novikov conjecture

Part of my own research is related to the Novikov conjecture, and hence I am always interested to see applications of it. When reading the preprint Essentiality and simplicial volume of manifolds fibered over spheres by Thorben Kastenholz and Jens Reinhold (arXiv:2107.05892) I saw another one of these applications (Theorem D therein). I do not … Continue reading "Rigidity implication of the Novikov conjecture"