### Abel Prize 2023

The Able Prize 2023 is awarded to Luis A. Caffarelli for his seminal contributions to regularity theory for nonlinear partial differential equations including free-boundary problems and the Monge–Ampère equation.

SPP 2026 - Geometry at Infinity

The recent series of results about one-relator groups (see, e.g. the previous two blog posts) culminates now in the final breakthrough: The conjecture of Baumslag from the 70s (that all one-relator groups are coherent) is resolved. The corresponding preprint by Marco Linton was put today on the arXiv:2303.05976.

Seems to be an interesting time right now to be working on coherent groups (previous blog posts: link and link). Recall that coherent groups are those whose finitely generated subgroups are finitely presented, and that coherence of one-relator groups is one of the main open problems. It is known that one-relator groups with torsion elements … Continue reading "Homological coherence of one-relator groups"

Last month I blogged about coherent groups (i.e. groups whose finitely generated subgroups are finitely presented). There I also referred to an article of Daniel Wise about coherent groups that contains many open problems at the end. One of these problems is whether every one-relator group is coherent (a question posed by Baumslag in the … Continue reading "Virtually free-by-cyclic groups"

In this post we consider the Adams spectral sequence which computes the stable homotopy groups of spheres at the prime 2. The classes \(\{h_j\}_{j\ge 0}\) on the 1-line of the second page are called Hopf classes since they are related to the Hopf invariant: Adams proved that Hopf invariant one classes can only exist in … Continue reading "Differentials in the Adams spectral sequence"

Recall that a group G is called coherent if every finitely generated subgroup of G is finitely presented. Main examples are 3-manifold groups and (virtually) polycyclic groups. Instead of trying to motivate the study of coherent groups in my own words, let me instead just refer to Section 2 of the article `An Invitation to … Continue reading "Coherent groups"

Let us consider the following classical problem from geometry (the case \(n=3\) is basically Plateau’s problem): Let \(\Gamma\) be a smooth, closed, oriented, \((n−1\))-dimensional submanifold of \(\mathbb{R}^{n+1}\). If we consider all the smooth, compact, oriented hypersurfaces \(M \subset \mathbb{R}^{n+1}\) with \(\partial M = \Gamma\), does there exist one with least area among them? In the … Continue reading "Regularity of minimizing hypersurfaces"

A series of posters and some other related media were produced by the National Academy of Sciences of the USA to showcase mathematics of the twenty-first century and its applications in the real world: link. If you still don’t know what to put on your office walls, have a look at those posters!

## Recent Comments