Non-trivial units of complex group rings

One of most important mathematical results from 2021 was Gardam’s refutation of the unit conjecture (blog post): He constructed the first non-trivial unit in a group ring. The coefficients of the group ring of the first counter-example were \(\mathbb{F}_2\), and for three years the question whether one can generalize his idea to get counter-examples in … Continue reading "Non-trivial units of complex group rings"

Freiraum 2023

Letztens wurden die Projekt verkündet, welche bei Freiraum 2023 gefördert werden. Im Rahmen von Freiraum können Mittel für die Verwirklichung von Projekten in der Lehre beantragt werden, und ich hatte mich diesmal gefragt, ob es etwas spannendes aus der (reinen) Mathematik darunter gibt. Da es keine Auflistung nach Fächern gibt, arbeitete ich mich durch die … Continue reading "Freiraum 2023"

2024 Breakthrough Prize in Mathematics

The 2024 Breakthrough Prize in Mathematics goes to Simon Brendle for transformative contributions to differential geometry, including sharp geometric inequalities, many results on Ricci flow and mean curvature flow and the Lawson conjecture on minimal tori in the 3-sphere. The 2024 New Horizons in Mathematics Prize goes to Roland Bauerschmidt for outstanding contributions to probability … Continue reading "2024 Breakthrough Prize in Mathematics"

The Kervaire Conjecture

Think about your favourite non-trivial group. Now add a generator to it and then add any relation. Is the resulting group still non-trivial? The above question is known as the Kervaire conjecture. Phrased more concretely, if \(G\) is any non-trivial group and \(r \in G \ast \mathbb{Z}\), is \((G \ast \mathbb{Z})/\langle\!\langle r\rangle\!\rangle\) again non-trivial? This … Continue reading "The Kervaire Conjecture"